We review some facts without proof: Theorem (Stirling approximation for P(S))

Let 5:0. For sec with larges $l \leq 71-\delta$,

we have $log P(S) = (S-\frac{1}{2})lg S - S + log 27 + O(\frac{1}{1S1})$ and $P(S) = \sqrt{2\pi} S^{-\frac{1}{2}} \ell^{-\frac{1}{2}} \ell^{-\frac{1}{2}}$ Corollary Fix 52,52, to real numbers with 52552 and 1612 to, 1 Motit) / = 5211 /t/0-2 e - 2/t/ (4+ Ora, Ga, to (1+1)). Setch of pf: For oz & o cor and It1 = to, 1 Plotit) / 5 1/1/2 exp (Re(G+it) (log 52+2 +i arg (5+it))))

- (lg 1t/+0-(1/4)) - 1t/(1/2+0-(1/4))

- (lg 1t/+0-(1/4)) - 1t/(1/2+0-(1/4)) Application: From functional equation of y(s),

we see that, for Too, 1+0

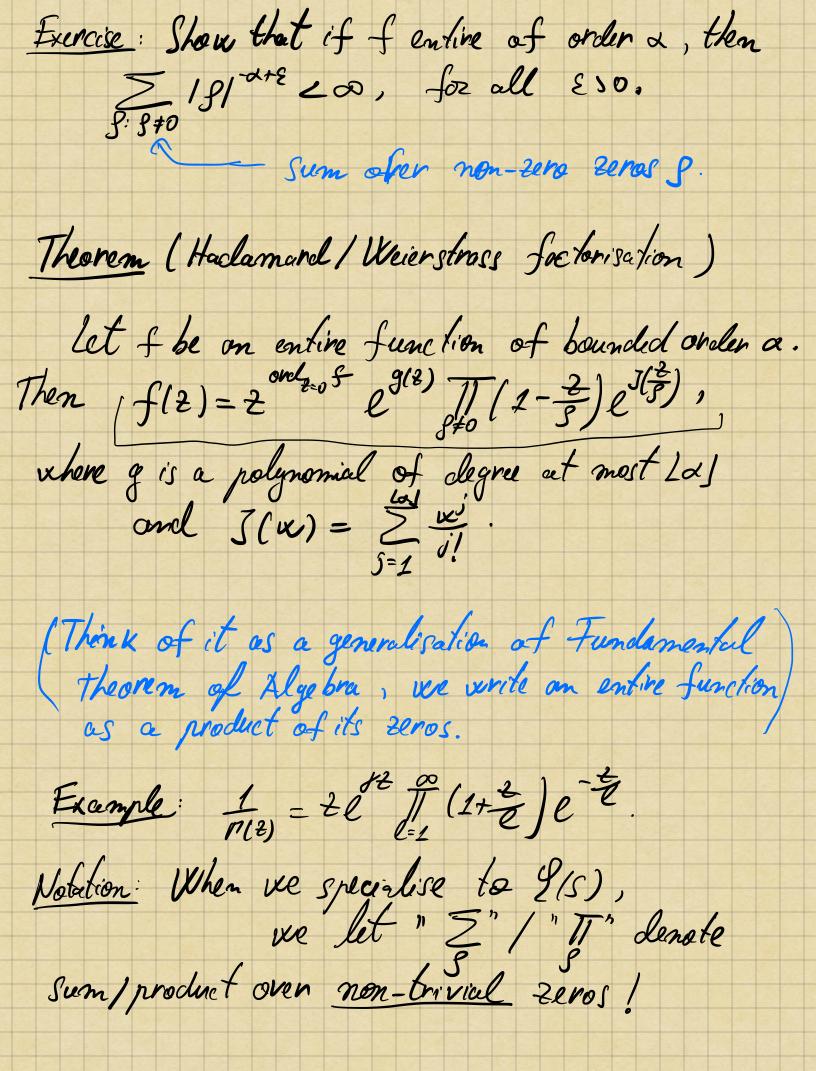
21-5+it) 46 1612.

Definition: let f. C-SC an entire function.

We say f has bounded order if 3 M > 0 such that fls) = O(exp(151 m)), for all se C. H f has bounded order, we devote the order of first (15) 20 exp(1512) 3. Notation: It is standard to denote the zeros of a complex function by g. By "Z" or "II" we mean the sum/product over all zeros, unless specified differently. Lemna: let f an entire function of order a. Fix 250. Then for all R21,

1916R Sum over zeros of f with 181ER

counted with multiplicity. Proof: Con assume without generality f(s) \$0, otherwise replace f(s) with f(s) some m. Then $2 \le 1 \le \max_{121=2R} \log |f(2)| \le (2R) \le R$,



Theorem: (Hadamard product for 30).

Let F(s):= s(s-1) E(s). Then $F(S) = e^{BS} \sqrt{1/(1-S)} e^{S}$, for some constant B Proof: Recall $F(S) = S(S-1)TT^{-S/2} \Gamma(S/2) \mathcal{Z}(S)$ is an entire function for $S \in C$ and F(S) = F(I-S). Enough to estimate F(S) for $Re(S) \ge 1$. From Stirling approximation, $lag P(S) = S lg P(S) - S + \frac{1}{2} lag S + O(1)$ (we are in Recs) > 1, so lary s/4 T/2). Also, for Re(s) > 1, re Luc (s-1) 2(s) 22 15/2. Threfore F(s) is entire of order 1, hence it has Hadamard product. Its zeros are the non-trivial zeros of G(s). - Hadamerel product F(S) = e A+BS // (1-5) es Product over non-trivial zeros of 915)

counted with multiplicity

But note e= F10) = F11) = lim (s-1) y(s) = 1 -> (A=0). Lemme: Z 1510 converges fon 0 1, but diverges

for T = L. Proof: We know & 1510 converges for o > 1, since F(s) is antive with order 1. (from exercise sheet). Seppose for contradiction 2,51 converges. We use the inequality 111-2) 12 12 e , for all zec. Then F(s) = e BS T 11-5) es 22 e C/S/, where C = 1B1 + 2 \(\frac{1}{5} \) 151 However, from Stirling opproximation, for $\sigma > 0$ Sufficiently large, $\Gamma(\underline{\sigma}) = \int \overline{\iota} t \, \exp\left(\left(\underline{\sigma} - \frac{1}{2}\right) \int_{\underline{\sigma}} \underline{\sigma}\right) - \frac{\sigma}{2} \left(1 + \sigma(\underline{\sigma})\right)$ and hence FLO) > exp(o lego).
Contradiction.

haportant remark: If I non-trivial zero of g(s),
so is \$ so we love Oc 1 + 1 = 22/18) \(\frac{2}{19/2} \) So me have that lim 2 to converges. [] 1 = 2 2, which coverges as x -> 0) We denote $\sum_{S} \underline{J} := \lim_{X \to \infty} \sum_{|S| \in X} \underline{J}$. Other of summation injectent, not absolutely consist Lenne: B = - \(\frac{5}{5} \). Proof: Recall F(s) = e Bs T(1-5)es. Towing logarithm denivative: $F(s) = 8 + \frac{1}{3} (s-s) + \frac{1}{3}$ Note that the poles of F are the zeros of FOI, which are exactly the non-trivial zeros of of g(s).

So I converges if s is not a non-trivial zero.

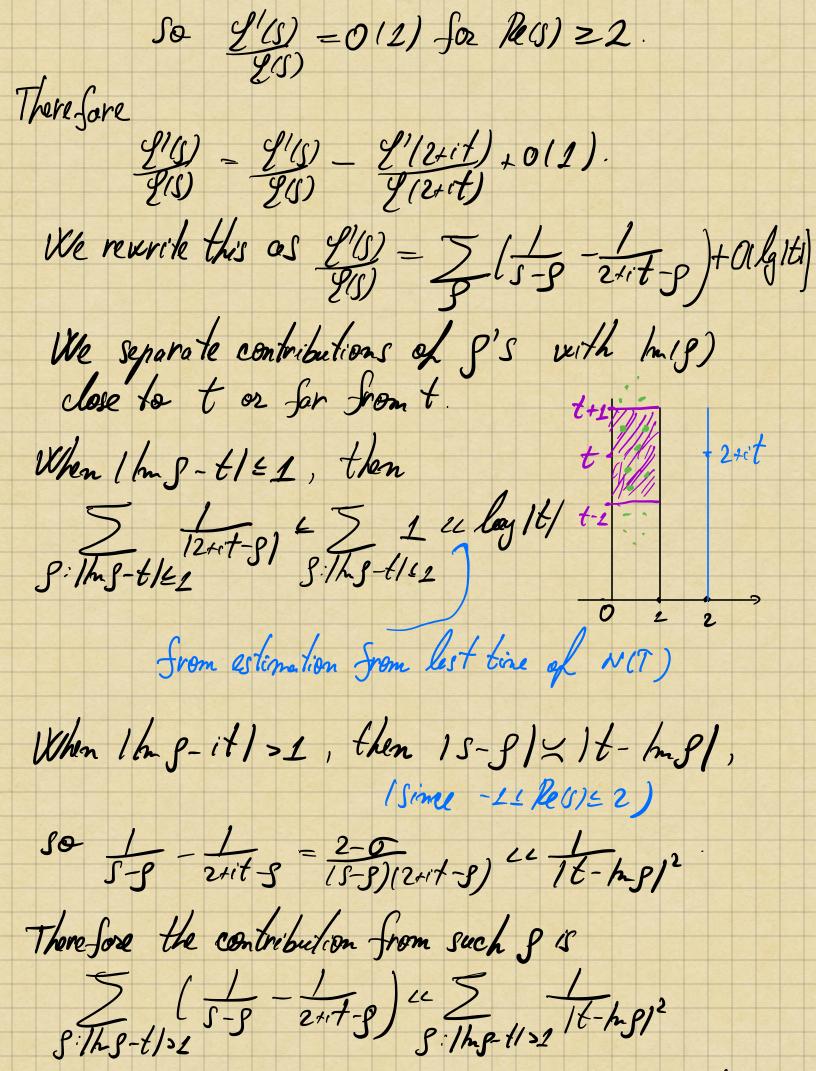
Since F(S) = F(1-S), we have $\frac{F'(S)}{F(S)} = -\frac{F'(1-S)}{F(1-S)}$, hence F'(s) = -8 - 5 (1-5-9 + 5). Therefore B= - \(\frac{1}{3} \frac{1}{3} + \frac{1}{2} \frac{5}{3} \frac{1}{5} - \frac{1}{2} \frac{5}{3} - \frac{1}{2} - \frac{5}{3} - \frac{5}{3} - \frac{1}{2} - \frac{5}{3} =-51 =0 We have used that if g is a zero of gis),
so is 1-8 (follows from functional equation). Lemma: (Partial fraction expansion for g(s)).

Let $s = \sigma + it$, with $-1 \le \sigma \le 2$ Then $g'(s) = -1 + \sum_{S=1}^{r} + O(\log(2+1t))$. Most Note that Gis) only has simple poles cet the zeros of g(s) and at 1.

We first observe result follows for 1 t 1 = 10,

because g(s) is O(1) unless close to one of the Sinite number of poles, in which case

$$\mathcal{L}(S) = -\frac{1}{S-1} + O(1), \text{ if } s \text{ is close to } 1.$$
Note indeed that since $g(s) = \frac{1}{L} + O(1)$, then
$$\mathcal{L}'(s) = -\frac{1}{(L-1)^2} + O(L) \text{ (think Lowers to expansion } 9.$$
Similarly, $g'(s) = \frac{1}{S-1} + O(L) \text{ if } s \text{ close to a term } 9.$
Now suppose $1t1 \ge 10$. We have that
$$F'(s) = \frac{1}{S-1} + \frac{1}{S-1}$$



new nest-long/enre Conclusion fallows. Covallary: (Size of f's) controlled away from zeros) Let S= \(\sigma\) it with \(\sigma\) 2-1. If the distance from s
to the nearest zero of \(\gamma(S)\) is at least \(\sigma\) \(\left(2+1\)\),
then \(\frac{f'}{2}(S)\) = \(0\) (\left(\left(2+1\))\). Proof: Follows lasily from last lemma and that 138: 10+it-91523/20ly (2+161).