
 

We review some facts withoutproof
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Definition Let f an entirefunction
We say f has bounded order if Ms o such
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If f has bounded order we denote the order of f
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Notation It is standard to denote the zeros of
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Lemma Let f an entire function oforder α
Fix so Then for all R 1

FER 1 Rate

sum other zeros of f with 18 E R
counted with multiplicity

Proof Con assume withoutgenerality f s 0

otherwise replace f s with f s s m for some m
fromJensen's ing

then feet Mayby1 a 12127 car

for all so



Exercise Show that if f entire of order α then

0181
20 for all so

Sum often non Zero zeros f
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Lemma Itp converges for 0 1 but diverges
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Conclusion follows

Corollary Sizeof is controlledaway from zeros
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